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Location of the Zeros of Polynomials Satisfying
Three-Term Recurrence Relations.

III. Positive Coefficients Case
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The location of the zeros of a family of polynomials satisfying a three-term
recurrence relation are studied. Various cases where some of the coefficients are
positive or merely real (but the main coefficients are positive) are considered, and
new results are obtained. © 1985 Academic Press, Inc.

INTRODUCTION

In the papers [2, 3], we have studied the location of the zeros of a family
of polynomials satisfying a three-term recurrence relation with complex coef­
ficients. This work has interesting applications in approximation theory. For
instance, in the study of zeros and poles of general Pade approximants or the
location of the zeros of general orthogonal polynomials.

Here we shall complement our results in the case of real coefficients; more
particularly, in the case of positive coefficients. Many authors have studied
this problem in this particular case, e.g., Saff and Varga [5], whose purpose
was to study the distribution of the zeros of some special polynomials [1].

In the present paper we shall give some improvements of previous results
(cf. Theorem 1.1). We shall also present two new results which allow, in
particular, analysis of the distribution of the zeros and poles of a family of
Pade approximants to the functions of class S [4] (cf. Theorem 2.1) and the
zeros of a family of orthogonal polynomials (cf. Theorem 2.2).

To carry this out, we shall use the properties of homographic transfor­
mations.
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1. NOTATION AND METHOD

Let {Pn}::'=o be a sequence of polynomials of respective degrees n which
satisfy a three-term recurrence relation:

(n = 0, I,... ), (1.1 )

where: P _I == 0, Po == Po *- 0 and the given polynomials B n (n = 0, I,... ) are
of degree I while the given polynomials An are of degrees <2 (n = 1,2,... ),
with A 0 == I. At present we suppose that A n and B n are polynomials with
complex coefficients.

If for some fixed integer n and complex z the following conditions are
satisfied:

(1.2)

then the relation (1.1) can be written:

Setting

(1.3)

(n = 0, I,... ), (1.4 )

we can consider the relation (1.3) as an homographic transformation Tn:

(1.5)

where

and

(1.6)

(n = 1,2,... ). (1. 7)

For the analysis of the transformation (1.6), we shall use only some global
information on the poles B n' To do that, we shall use the well-known
property that the transformation Tn maps any half-plane: {w Eel Re w~ Y},
(respectively {w Eel 1m w~ y}) which does not contain the pole Bn into the
closed disc of radius Pn centered in W n :

(1.8)
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Let .Y1' denote the complex z-plane with the exception of the zeros of An
(n = 0, 1,... ). By (1.1) and the hypothesis Po =1= 0, we easily see that if Z

belongs to.Y1' and Pn+ I(Z) = 0, then Pn(z) =1= O. Therefore, according to (1.3),
for any Z belonging to .Y1', the polynomial Pn +I (z) =1= 0 if and only if:

(1.9)

Our method consists of exploiting this remark to determine zero-free
regions for polynomials satisfying (1.1).

In order to study the distribution of zeros of a family produced by a
recurrence relation with positive coefficients, we give our central result:

THEOREM 1.1. Let {Pn}Z=o be a sequence of polynomials of respective
degrees n which satisfy the three-term recurrence relation with complex coef­
ficients:

Pn+I(Z) = (bn+ b~z)Pn(z) -An(z)Pn_l(z)

(n = 0,..., N - 1), (1.10)

where P-I == 0, Po == Po =1= 0; b~ > 0 (n = 0, 1,... , N - 1). Then this family of
polynomials has no zeros in the region gN defined by:

(n=O,I, ...,N-I)}, (1.11)

o&: n <N - I'!. (z d)= IAn+l(z)1 + ReA n+I(Z)
"" . n , 2b~(Re z - d) ,

1. (z d)= IAn+l(z)l- ReAn+l(z)
n , 2b~(lm z - d) ,

O~n <N:gn(d)=Rebn+b~d,

in(d) = 1m bn+ b~d,

]
Re bn [[ Re bo [ll,N = max - -b-'-, +00 n - -b-'-, +00 ,

O<n<N n 0

]
. Re bn[] Re bo ]

lZ,N = -00, mm - -b-'- n -00, - -b-'-
O<n<N n 0

]
1m bn [[ 1m bo [l3,N = max - -b-'-, +00 n - -b-'-, +00 ,

O<n<N n 0

]
. 1m bn[] 1m bo]

l4,N = -00, mm - -b-'- n -00, - -b-'-
O<n<N n 0

(1.12)

(1.13)

(1.14)

(1.15)
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~,N = U ( n (Z E ~N Ifll(z, d) ~ gll+ I(d), Re z >d}), (1.16)
de/t,N O<;;II<N-I

~,N = U ( n (z E ~N Ifll(z, d) ~ gil + I(d), Re z <d f), .(1.17)
de/2,N O<;;II<N-I

5;,N= U ( n {ZE~NIl,,(Z,d)~gll+l(d),lmZ>dl), (1.18)
de/3,N O<;;II<N-I

~,N = U ( n {z E ~N Il,,(z, d) ~ gil + I (d), 1m z <d}), (1.19)
de/',N O<;;II<N-I

c9N = U ~,N' (1.20)
1<;;1<;;4

Remark. According to the following proof, we can easily see that if:

b~ < 0, n =0, 1,..., N - 1,

(1.21 )

then we have merely to change

(1.16) into:

c91,N= U ( n {ZE~Nlfll(Z,d)~gll+l(d),ReZ<dl),
de/2,N O<;;II<N-I

(1.17) into:

c92 ,N = U ( n {z E ~N Ifll(z, d) ~ gll+ I (d), Re Z >d f),
de/t,N O<,II<N-I

(1.18) into:

c93 ,N = U ( n {z E ~N Il,,(z, d) ~ gil + I (d), 1m Z <d l),
de/4,N O<;;II<N-I

and

(1.19) into:

c94 ,N = U ( n {z E ~N Il,,(z, d) ~ gil + I (d), 1m z > dl).
de/3,N O<;;II<N-I

Proof of Theorem 1.1. To find zero-free regions for polynomials
satisfying (1.10) use, as mentioned, remark (1.9).

(I) Case dEl I,N' Let d be a parameter belonging to I I,N :

Rebll Rebo
d> max --b-,-,d~--b-'-'

O<II<N II 0
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Then, according to the definition of the function gn (see (1.13)) we have:
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(1.22)

Let z belong to the following set (cf. (1.16)):

n {zEdN Iliz,d) <gn+I(d),Rez > d} (1.23)
O,,;;,n<N-I

and suppose, for the moment, that z is not a zero of any Pn' Then, since
Re z >d, the functions gn satisfy:

0< n < N, (1.24 )

where the polynomials Bn are defined by: Bn(z) = bn+ b~z.

We show by induction that

(1.25)

where the functions tn are given by (1.4). If d belongs to lI,N' then according
to (1.22):

Re to = 0 <go (d).

Hence (1.25) obviously holds for n = O. Now, let us suppose that for u *' 0

(1.26)

Since, according to (1.5), tn+I(z) = Tn(tn(z)), we have, putting in (1.8)
Y= gn(d):

Re tn+1(z) <Re W n+Pn=In(z, d),

where the function/" is given by (1.12). Hence, according to (1.23),

(1.27)

This completes the inductive establishing of (1.25). Therefore, according to
(1. 24), we can infer:

O<n <N, (1.28 )

We have seen, according to (1.2), that to define the quantity tn(z) we must
suppose Pn(z) *' O. It is for this reason that in our proof we have had to
suppose z is not a zero of any Pn (n = 1,..., N - I).

It is clear that the polynomial PI has no zero (z 1 = - bolb~) in the set
defined by (1.23), since d ~ - Re bo/b~ and Re z > d. Hence, we can say that
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the quantities to and tl(z) exist for any z belonging to the set (1.23). Hence,
if 0 ~ n < 2, we have (1.28). Therefore, according to the remark (1.9), we
have, for any z belonging to the set (1.23), P2(z):;6 O. Hence, for any z
belonging to the set (1.23), the quantities to' tl(z) and tiz) exist, and in the
same way P3(Z) :;6 0 and so on.

So, we can conclude that for any d belonging to I I,N' the set (1.23)
contains no zero of any polynomial P n (n = 1,... , N), which leads to the set
(1.16).

(2) Case dE 12 N' The proof of this case is along the same lines as the
proof in the case dE II.N' Hence we merely sketch it.

We have just to change

. . Re bn Re bo
(1.21) mto d < mm - -b-' d ~ - ~b-'

O<n<N ~ ~

(1.22) into 0 <n <N, gn(d) <0, go(d) ~ 0,

(1.23) into n
O~n<N-1

{z E s/N lin(z, d) ~ gn+I(d), Re z < d},

(1.24) into 0 ~ n <N, gn(d) > Re Bn(z),

(1.25) into 0 ~ n <N, Re tn(z) ~ gn(d),

(1.26) into n =1= 0, Re tiz) ~ gn(d),

(1.27) into Re tn+I (z) ~ Re wn- Pn=in(z, d)

and

(1.28) into 0 ~ n <N, Re tn(z) > Re B n(z),

So, in this case, we can also conclude that ~,N given by (1.17) contains
no zero of any P n (n = 1,..., N).

(3) Case dE 13•N • The proof of this case is the same as the proof of the
case dE II,N' Here, we have just to change, in (1.8), W n= A n+ 1/2(Re Bn - Y)

into W n= -iAn+1/2(lm Bn - y), the functions in and gn into In and gn given,
respectively, by (1.12) and (1.13), and in step (1) to change Re into 1m.
Hence, 3;,N given by (1.18) contains no zero of any polynomial Pn

(n = 1,... , N).

(4) Case dE 14,N' This case corresponds to case (3) as case (2)
corresponds to dE II,N' Hence, we again conclude that the set ~,N defined
by (1.19) contains no zero of any polynomial P n (n = 1,..., N),

So, we can infer that the region Y'N given by (1.20) does not contain any
zero of the family {Pn}~=o' I
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2. SPECIAL CASES
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In this section, we give two new results on the location of zeros of some
special polynomials.

We locate the zeros of families of polynomials which satisfy a three-term
recurrence relation with positive coefficients. As we said before, our principal
tool will be Theorem 1.1.

2.1. Conic Theorem

The following result complements Saff and Varga "parabola theorem" [5].
We shall see that the following regions are bounded by conic curves; it is for
this reason that we name our result "conic theorem."

THEOREM 2.1 (Conic Theorem). Let {Pn}~=o be a sequence of
polynomials of respective degrees n which satisfy the three-term recurrence
relation:

Pn+ I(Z) = (bn+ b~z) Pn(z) - anzPn_ I(Z)

(n = 0,..., N - 1), (2.1)

where: P _1== 0, Po == Po =1= 0, and for all integers n (n = 0,..., N - 1) the an
and b~ are positive numbers, while the bn are real numbers. Set:

IZI+ Re Z ~ IZI- Re z
qJ(z, d) = 2(Re z _ d) , qJ(z, d) = 2(lm Z _ d) , (2.2)

b' b' b'
O<n<N:!lfn(d)=~(bn+b~d), Iji(d)= n-I nd, (2.3)

an n an

and

F1,N = U {z Eel qJ(z, d)
d> -bolb~.d> maxO<n<N( -bnlb~)

,,;;; min !Ifned), Re z > d}, (2.4)
O<n<N

U

> max !Ifned), Re z < d},
O<n<N

r3,N = U {z E iC I~(z, d)
d>O

,,;;; min ljin(d), 1m z > d},
O<n<N

(2.5)

(2.6)
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r 4 ,N = U {Z Eel ifi(z, d)
d<O

~ max ifin(d), 1m z <d}.
O<n<N

(2.7)

Then the region r N defined by:

r N = U r i •N
1<1<4

(2.8)

contains no zero of the family {Pn}~~ 0 •

Remark. In (2.4), for a fixed parameter: d ~ - bo/b~, d > maxo<n<N ­
bn/b~, the set {z Eel <p(z, d) ~ mino<n<N 'IIn(d), Re z >d} is bounded by an
elliptic curve when mino<n<N 'IIn(d) < 1 and by a parabolic curve when
minO<n<N 'IIn(d) ~ 1. In (2.5), for a fixed d: d ~ - bo/b~, d <mino<n<N­
bn/b~, the set {z Eel <p(z, d) ~ maxO<n<N 'lin (d), Re z <d} is bounded by a
branch of an hyperbola, and in (2.6), for a fixed d> 0, the set {z Eel
ifi(z, d) ~ mino<n<N ifin(d), 1m z >d} is also bounded by a branch of an
hyperbola. The set r4 ,N defined by (2.7) is, in fact, symmetric to the set rJ •N

given by (2.6) with respect to the real axis.

Proof of Theorem 2.1. Theorem 2.1 is an immediate consequence of
Theorem 1.1. Indeed in this case, according to (1.14) and (1.15):

[I,N= ] max - bb~' +oo[ n [- bb~, +00['
O<n<N n 0

]
. bn

[] bo][ = -00, mm -- n -00,--
2,N O<n<N b~ b~

[3,N = ]0, +00 [, [4,N = ]-00,0[.

Putting in (1.10): An(z) = anz (n = 0, 1,..., N - 1), we have, according to
(1.11): J'l'N = C - {O}.

Let us suppose for a moment that for all n: bn 1= 0. Then (2.1) and the
hypothesis Po == Po 1=°show that z = 0 is not a zero of any Pn' Hence, in
(2.4)-(2.7), J'l'N = C. Now, let us suppose that one or more bn = 0.
According to the condition on the parameter d, the sets (2.4)-(2.7) do not
contain the point z = 0. So we can take, also in this case, J'l'N to be C.

In (1.16)-(1.19), according to the hypothesis on the numbers an, bn and
b~, the inequalities fn(z,d)~ gn+l(d),fn(z,d)~ gn+l(d), l,,(z,d)~ in+l(d)
and l,,(z,d)~in+l(d) are, respectively, equivalent to <p(z,d)~'IIn+J(d),

<p(z,d)~'IIn+J(d), ifi(z,d)~ifin+J(d) and iP(z,d)~ifin+l(d), where the
functions f/J,fP,'IIn+! and ifin+l are given by (2.2) and (2.3). Hence the sets
~,N (1 ~ i ~ 4), given by (1.16)-(1.19), obviously become in the present
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case rj,N (l~i~4), respectively, which implies ~=rN (see (1,20) and
(2.8». I

This theorem allows one to study (when we put bn = 1, 0 ~ n <N) the
distribution of the zeros and poles of Pade approximants to some functions
[4), and to locate the zeros of some special polynomials.

2.2. Location of the Zeros of Orthogonal Polynomials

Here we give a new method which allows us to locate the zeros of any
finite family of classical orthogonal polynomials.

THEOREM 2.2. Let {Pn}Z~o be a sequence of polynomials of respective
degrees n which satisfy the three-term recurrence relation:

Pn+I(Z) = (bn+ b~z) Pn(z) - anPn_l(z)

(n = 0, 1,..., N - 1), (2.9)

where: P -I == 0, Po == Po *' 0, and for all integer n (0 ~ n <N) the an and b~

are positive numbers, while the bn are real numbers. Set:

V /'- . bn . () _ . an (b b' )-1X""" XI - mm - -b' . m X - mm -b' n + nX ,
O,;;,n<N n O<n<N n-I

b a
VX~X2= max --E..:M(x)= max -bn (bn+b~x)-l.

O<,n<N b~ O<n<N ~-l

(2.10)

(2.11 )

Then the polynomial Pn (n = I,..., N) has all its zeros in the open interoal IN
defined by:

IN = )max (X +m(x», min (x +M(x»)[.
X<'XI X>X2

(2.12)

Remark. This theorem also allows one to study the evolution with N of
the support of a positive measure defining the orthogonal polynomials.

Proofof Theorem 2.2. This theorem is also an immediate consequence of
Theorem 1.1.

First let us observe, by the definition (1.1 1) of d N , that

dN=C, (2.13 )

and that the function m given by (2.10) has its maximum at a point
belonging to I 2 ,N of (1.14), because IimI2,N3X~mino<"<.v<-b"lb')m(x) = -00.

Similarly, the function M given by (2.11) has its minimum at a point
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belonging to /1 N of (1.14) as, in this case, lim[ 3x~max1-b Ib') M(x) =
, 1,N O<n<N' It' n

+00. Hence we can write:

Inf (x +M(x» = min (x +M(x»,
XE["N X;;'X2

Sup (x +m(x» = max (x +m(x»,
XE[2,N X.;; X 1

(2.14)

where the quantities XI and x 2 are given, respectively, by (2.10) and (2.11).
According to the hypothesis on the numbers an' bn and b~, and (2.13) and

(2.14), the sets g;,N,3;,N' 3"3,N and 3"4,N given by (1.16)--(1.19) become
obviously:

'~,N = {z Eel Re z ~ Inf (d +M(d»}
dE[I,N

= {z Eel Re z ~ min (d +M(d))},
d;;'X2

3"2,N = {z Eel Re z ~ Sup (d +m(d»}
dE[2,N

= {z Eel Rez ~ max (d +m(d»},
d';;x,

3"3.N= {z Eel Imz > 0},c9'4.N= {z Eel Imz < O}.

So, we can infer that the family {Pn }~= 0 has all its zeros in the set: C - 3"N'
where 3"N is given by (1.20), which implies the conclusion of the theorem. I
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